Journal of Fluorine Chemistry 71 (1995) 163-164 ## The oxidizing properties of cationic high oxidation state transition-element fluoro species N. Bartlett ^{a,*}, G. Lucier ^a, C. Shen ^a, W.J. Casteel, Jr. ^a, L. Chacon ^a, J. Munzenberg ^a, B. Žemva ^b ^a Chemical Sciences Division, Lawrence Berkeley Laboratory and Department of Chemistry, University of California, Berkeley, CA 94720, USA ^b Jožef Stefan Institute, University of Ljubljana, 61000 Ljubljana, Slovenia Keywords: Oxidizing properties; Transition element fluoro species; Magnetic properties; Disproportionation The substraction of F^- from thermodynamically stable salts such as those of $NiF_6{}^2-$ or $AgF_4{}^-$, using fluoride ion acceptors (e.g. BF_3 or AsF_5) in anhydrous hydrogen fluoride (AHF), gives access to fluorides such as NiF_4 , NiF_3 and AgF_3 , which are thermodynamically unstable towards loss of fluorine. The neutral binary fluorides are stronger oxidizers than their anionic relatives and the cationic species are better oxidizers than the neutral or less positively charged species of the same oxidation state. In anhydrous HF (AHF) at -60 °C, AgF_3 oxidizes oxygen quantitatively according to the equation: $$O_2(g) + AgF_3(c) + 2AsF_5(solv) \longrightarrow$$ $$O_2^+ AsF_6^-(c) + AgF^+ AsF_6^-(c)$$ even though the loss of translational entropy for reactants to products is high. In strongly acid AHF solution, AgF₃ will oxidize either PtF₆⁻ or RuF₆⁻ to the neutral molecule: $$MF_6^- + AgF_3 + 3AsF_5 \longrightarrow$$ $$Ag^{2+}(solv) + 3AsF_{6-}(solv) + MF_{6}$$ When used as the fluoride ion acceptor, BiF_5 promotes high yields of hexafluoride (72% for PtF_6) by enhancing the solubility of Ag^{II} and alkali cations. Even at -78 °C, interaction of AgF_3 with AsF_5 in AHF yields AgF^+ AsF_6^- and $1/2F_2$. AgF⁺MF₆⁻ salts, where M=Sb, Bi, Ir, can be prepared by the action of F₂ on AgMF₆ at -20 °C in AHF, but AgOsF₆+F₂ yields AgF₂ and OsF₆. The AgF⁺ MF₆⁻ salts all contain the one-dimensional chain cation (AgF)_nⁿ⁺ which is characterized by its temperature-independent paramagnetism from 50 K upwards. In contrast, salts containing the tetragonally elongated octahedral Ag^{II} species such as $Ag(MF_6)_2$, M=Bi, Sb, or $Ag(M^1F_4)_2$, $M^1=Ag$ or Au, obey the Curie-Weiss law from 50 K upwards and have magnetic moments of ~ 2 BM. Solvated Ag^{2+} in AHF is a more powerful oxidizer than the $(AgF)_n^{n+}$ species and liberates IrF_6 from its anion and $S_2O_6F_2$ from SO_3F^- , and at -78 °C generates $C_6F_6^+$ salts from C_6F_6 and oxidizes $CF_3CF=CF_2$ to $CF_3CF_2CF_3$ quantitatively. At -78 °C Ag^{2+} (solv) will also oxidize O_2 : $$Ag^{2+}(solv) + O_2(g) + 2AsF_5(solv) \longrightarrow$$ $$O_2^+ AsF_6^-(c) + AgAsF_6(c)$$ but even at -60 °C these products re-establish the reactants because of their high translational entropy. In contrast, basic AHF favors the formation of Ag^{III} from Ag^{II} : $$AgF_2 + O_2AsF_6 + 2KF \longrightarrow KAgF_4 + KAsF_6 + O_2$$ the KAgF₄ being obtained in 42% yield based on O₂AsF₆ consumption. The disproportionation of AgF⁺ AsF₆⁻ in AHF: $$4AgF^{+}AsF_{6}^{-}\longrightarrow$$ $$AgAsF_6 + (AgF)_2AsF_6AgF_4 + 2AsF_5$$ indicates the marginal stability of Ag^{II} in AHF with respect to Ag^I and Ag^{III}. The compound (AgF)₂AsF₆AgF₄ contains (AgF)_nⁿ⁺ chains, AsF₆⁻ and AgF₄⁻, and is conveniently prepared in AHF from AgF₂: $$3AgF_2 + O_2AsF_6 \longrightarrow (AgF)_2AsF_6AgF_4 + O_2$$ ^{*} Corresponding author. It is a temperature-independent paramagnet from 50 K upwards. CuF₃ is formed as a red solid at -78 °C by solvolysis of K₃CuF₆ in AHF. It loses F₂ at -40 °C in KHF₂-rich AHF and oxidizes Xe to XeF₆ at -78 °C. NiF₄, a brown solid, yields RuF₆ or PtF₆ from their MF₆ salts in AHF at -65 °C when BF₃ or AsF₅ is used to acidify the AHF. A similar release of these powerfully oxidizing hexafluorides occurs when rhombohedral NiF₃ is used in place of NiF₄, but BF₃ is not then an effective acid. This is attributed to the release of Ni^{IV} from the R-NiF₃ by strong acid (e.g. AsF₅). Acidified AHF solutions of Ni^{IV} like those of Ag^{III} may be the strongest electron oxidizers known to date. ## Acknowledgements The work carried out at Berkeley was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under Contract Number DE-AC-03-76F00098. That at the Jožef Stefan Institute was supported by the Ministry of Science of the Republic of Slovenia. Additional support was provided by the US/Slovene Joint Fund for Scientific and Technological Cooperation, in association with the National Science Foundation under Grant No. JF947. L.C. is grateful to NPSC for a fellowship. J.M. thanks the Alexander von Humboldt Stiftung for a Feodor Lynen fellowship.